Critical loads in Europe: overview and latest developments

23 October 2015, Gert Jan Reinds (Alterra), Jean-Paul Hettelingh (RIVM-CCE)

With contributions from Luc Bonten, Janet Mol, Wieger Wamelink, Wim de Vries (Alterra) and Max Posch (RIVM-CCE)
Contents

- Alterra and the CCE

- The critical load process in Europe
 - Organisation
 - Achievements
 - Critical loads for N as a nutrient: using biodiversity criteria for critical loads

- Critical loads for heavy metals
 - Methods
 - Results

- Conclusions
Alterra, Wageningen UR and RIVM-CCE

Wageningen UR

Environmental Sciences Group

National Institute for Public Health and the Environment (RIVM)

Other science groups

Alterra (Applied Research)

Environmental sciences (University)

20 years cooperation

Other

CCE

NADP-CLAD meeting Indianapolis 2014
The critical load process in Europe: The 1979 Geneva Convention on Long-range Transboundary Air Pollution

Integrated assessment and policy support

NADP-CLAD meeting Indianapolis 2014
Achievements: emission reductions SO_x

Source: LRTAP/EEA

Chart — Change in emissions of sulphur oxides compared with the 2010 NECD and Gothenburg protocol targets

Source: LRTAP/EEA
Achievements: emission reductions NO$_X$

Source: LRTAP/EEA
Achievements: trends in exceedances: acidity

Areas where critical loads for acidification are exceeded by acid depositions (EMEP50 model; Revised Gothenburg Protocol (RGP))

Source: ICPM&M/CCE

NADP-CLAD meeting Indianapolis 2014
Achievements: trends in exceedances: CLnutN

Areas where critical loads for eutrophication are exceeded by nitrogen depositions (EMEP50 model; Revised Gothenburg Protocol (RGP))

Source: ICPM&M/CCE
Emission trends

Source: EMEP REPORT 1/2014
Future directions: Critical loads based on biodiversity endpoints

![Graph showing Calluna vulgaris probability vs pH and NO3 concentration](image)
From response to critical load

Who defines the target?
Part 2: Critical loads for heavy metals
Critical load for terrestrial ecosystems: uptake + leaching:

$$ CL(M) = M_u + M_{le(crit)} $$

$$ M_u = f_{Mu} \cdot Y_{ha} \cdot [M]_{ha} $$

- f_{Mu} = fraction of metal uptake within the considered soil layer
- Y_{ha} = yield of harvestable biomass ($kg.ha^{-1}.a^{-1}$)
- $[M]_{ha}$ = metal content in harvestable parts of the plant ($g.kg^{-1}$)

$$ M_{le(crit)} = c_{le} \cdot Q_{le} \cdot [M]_{tot,sdw(crit)} $$

- Q_{le} = leaching flux ($m.a^{-1}$)
- $[M]_{tot,sdw(crit)}$ = critical total concentration of M in soil water ($mg.m^{-3}$)
- C_{le} = unit conversion factor
Which critical concentration?

- Critical metal concentrations in ground water (Cd, Pb, Hg) in view of human health effects through intake of drinking water
- Critical concentrations of free metal ions in soil solution (Cd, Pb) in view of ecotoxicological effects on soil microorganisms, plants and invertebrates
- Critical metal contents in the soil (Hg) in view of ecotoxicological effects on soil microorganisms and invertebrates in the forest humus layer

WHO criteria:
- Pb: 10 mg.m⁻³
- Cd: 3 mg.m⁻³
- Hg: 6 mg.m⁻³

From toxicity data, as a function of pH and DOC:
Compute Hg in solution from critical Hg in soil.
From toxicity data to critical concentrations
1: Toxicity data

Q represents \(\log M_{\text{soil,toxic}} + \frac{b}{c} \log OM \)

Source: Lofts *et al.*, 2004
From toxicity data to critical concentrations

2: Critical limit functions

Based on the protective effect of H+ and other cations

Source: Lofts et al., 2004
From toxicity data to critical concentrations 3: Total critical concentrations

Critical total concentrations as a function of pH and DOC using the WHAM model

Source: De Vries, Lofts et al., 2007
Hg: two approaches
1: Using critical limit for the solid phase

\[
[Hg]_{\text{dis, sdw (crit)}} = [Hg]_{\text{OM (crit)}} \cdot f_f \cdot [\text{DOM}]_{\text{sdw}} \cdot csdw
\]

- \([Hg]_{\text{dis, sdw (crit)}}\) = critical total Hg concentration in soil drainage water (mg m\(^{-3}\))
- \([Hg]_{\text{OM (crit)}}\) = critical limit for Hg concentration in solid organic matter (OM) (0.5 mg (kg OM\(^{-1}\))).
- \(f_f\) = fractionation ratio, describing the Hg on organic matter in solution (DOM) relative to that in solids (OM) (–),
- \([\text{DOM}]_{\text{sdw}}\) = concentration of dissolved organic matter in soil drainage water (g m\(^{-3}\)),
- \(csdw\) = 10\(^{-3}\) kg g\(^{-1}\), factor for appropriate conversion of mass units.

This is the approach given in the mapping manual (but is pH independent)
Hg: two approaches

2: Using critical free concentrations

Critical limit about 3.3 mg.kg\(^{-1}\)

(manual: 0.5 mg.kg\(^{-1}\))

Source: Tipping, Lofts et al., 2010

17 countries participated

Effect 1-4: terrestrial
Effect 5: freshwater

Source: RIVM-CCE
Some results: using the CCE background database

Simple critical load approach was also used for Cr, Ni, Cu, Zn, As, Se
Modelled depositions

Fig. 27. Spatial distribution of depositions in Europe in 2003

Fig. 22. Spatial distribution of sulfate depositions in Europe in 2003

Fig. 32. Spatial distribution of mercury depositions in Europe in 2003

Source: EMEP MSC East, 2005
Exceedances (deposition year: 2006)
Conclusions, N + S

- Critical loads of N and S have been and are the basis for successful emission reductions.

- Substantial reduction of NH$_3$ emissions remains difficult in Europe; exceedances of CLnutN persist in the future.

- Future CL(N) could/will be based on biodiversity endpoints, rather than abiotic limits; this work is under development within EU FPVII Eclaire project.
Conclusions, heavy metals

- For heavy metals, critical loads, depositions and exceedances have been computed but have not been used directly in emission abatement.
- Other activities (UN Minamata convention) halt the use of CL(HM) for ecosystems, human health is considered more important.
- There is a substantial uncertainty in critical limits for HM as well as in emissions and depositions especially for Hg.
- Preliminary results show no or very little exceedances for metals other than Cd, Pb and Hg.
End